Industrial IoT versus IoT

Do you know the difference?

Article Published – April 2018

The Internet of Things (IoT) enables disruptive transformation across multiple market segments, from consumer, enterprise, agriculture, healthcare, manufacturing, utilities to government and cities. Industrial IoT (IIoT), a subset of the larger IoT, focuses on the specialised requirements of industrial applications, such as manufacturing, oil and gas, and utilities.

Although IoT and IIoT share common technologies (sensors, cloud platforms, connectivity, and analytics), the similarities end there. This article highlights key differences that product managers and buyers must know when planning industrial IoT solutions. While many people assume functionality distinguishes IoT from IIoT, the reality is not that simple.

A consumer IoT device may have the same functionality as an IIoT device, but still not be considered an industrial product. For example, a consumer and an industrial activity tracker both collect and monitor heart rate information. But the industrial tracker incorporates additional design parameters that its consumer counterpart may not have.

The parameters that differentiate IoT from industrial IoT include:

  1. Automation
  2. Interoperability
  3. Low latency
  4. Precision
  5. Programmability
  6. Reliability
  7. Resilience
  8. Scalability
  9. Security
  10. Serviceability

As a product manager rolling out your first industrial solution, or a buyer considering a consumer IoT solution for industrial use, it’s important to understand the differences.


Numerous industrial processes are highly automated from beginning to end, with limited to no human intervention. IoT solutions operating in industrial environments need to support a range of autonomy requirements. This may involve building intelligence into the edge devices, incorporating control and automation logic in the gateway, or incorporating deep learning capabilities in the system design. In addition, it must be programmable and integrate with legacy or new manufacturing execution systems.


Industrial IoT solutions must co-exist in a domain with significant amount of legacy operations technologies (OT), including SCADA, M2M and other purpose built manufacturing execution systems. These legacy OT systems are not going away. Industrial IoT solutions must integrate, support various protocols and data sets, and work dependably with these manufacturing systems. Similarly, IIoT solutions must integrate with back-office enterprise resource planning (ERP) systems.

Low latency

In a rapid non-stop production system with sensors monitoring every aspect of the operation, every second matters. Inconsistencies must be detected, and corrective actions applied in near real time. Any delay in detection, assessment, decision-making and execution would be expensive, in terms of worker safety, product quality, expenses and lost revenues. Industrial IoT solutions must similarly be built to support the low latency requirements of some industrial applications.

Precision and Accuracy

Industrial operations require elevated levels of precision and accuracy. Automated high volume, high speed manufacturing processes are synchronized to milliseconds. Quality assurance systems recognise minute dimensional variations and take prompt corrective actions based on those measurements. In this environment, “sufficiently close” is not good enough, and results in lost efficiency, downtime, and revenues. Industrial IoT solutions must assist operations where high precision and accuracy are “business as usual”.


Industrial and OT frameworks, from programmable logic controllers to machining equipment, are frequently reprogrammed and reconfigured to support new processes. Writing the computer programs is done remotely, on site or in the field. Industrial IoT solutions supporting industrial and manufacturing applications must give the same flexibility and adaptability to support operations.


Industrial systems operate in lengthy time scales before replacement – twenty to thirty years is not unusual. They operate in unforgiving situation, sometimes subject to extreme heat, cold, high vibration, pressure and hazardous conditions. They may work in remote locations, far away from headquarters. Industrial IoT solutions may be subject to similar conditions and requirements. They must be solidified to support high availability, withstand high duty cycles, and work dependably and within tolerance, day in, day out for years and years, with shutdowns only for maintenance.


Mission critical industrial processes and frameworks, where downtime (or even access for service) is not an alternative, are designed with resilience in mind. A breakdown in one part of the system will not stop operations. While there may be a loss in operational capability, the tasks are taken up by backup systems, or the processes may be routed to a part of the system with extra capacity. Industrial IoT solutions, in mission critical operations, must support fault tolerance, or resilience capabilities in its design. From a loss of sensors to a loss of connectivity, industrial IoT systems and architectures must adjust for in-use failures, and still be able to satisfactorily complete its processes and operations.


Industrial networks are specialized large scale networks supporting several thousands (or more) of controllers, robots, hardware and other purpose built applications. IIoT solutions deployed into these networks must scale seamlessly, now and eventually, to support a huge number of new sensors, devices and controllers, as well as existing non-IoT devices. This support includes interoperability, planning, workflow integration, data collection, analysis, decision-making and integration with manufacturing and business execution systems.


Security is important for all IoT solutions, but industrial IoT solutions require more robust measures. A disruption of a high volume manufacturing process results in lost production costing millions of dollars per day. A takedown of the electrical grid affects economic activity for millions of people and jeopardizes national security. IIoT solutions employ a variety of advanced security measures, from secure and resilient system architectures, specialized chipsets, encryption and authentication, threat detection, to management processes.


Industrial systems must operate reliably and predictably in unforgiving conditions for years and years. Supporting this level of performance requires regular maintenance from in-house and field service technicians. IoT solutions operating in industrial environments must be serviceable keeping in mind the end goal of sustaining the levels of performance required. From swapping out sensors, updating firmware, to configuring gateways and servers, the capacity to maintain industrial IoT solutions over its entire lifecycle is an essential requirement.

In Conclusion

Functionality is essential, but isn’t the only determinant of whether an IoT solution is “industrial” ready or not. There are ten different parameters that must be considered. In all actuality, IoT and IIoT solutions may incorporate all these parameters, but differ in what is implemented and how.

Industrial processes are not business processes. They force much more onerous requirements on IIoT solutions. Product managers must account for these additional requirements in the design and engineering. They must comprehend the specific use cases, as well as the situations the solutions will be placed into.

IIoT is a huge disruptive opportunity and draws many new solutions providers into the marketplace. Vendors offering IIoT solutions may be coming from adjacent markets with solutions that may not be robust enough for all industrial applications. At the same time, today’s solutions are developing and still evolving in a very dynamic market. Buyers must look beyond the “wow” factor to make sure they are getting IoT solutions that are designed for industrial environments.

Source: Strategy of Things